Skip to main content

Smart Pump Custom Concentrations Without Hard "Low Concentration" Alerts


Problem

Problem

This month marks the tenth anniversary of ISMP's very first newsletter article about a "new and emerging technology" we coined back then as "smart" infusion pumps ("Smart" infusion pumps join CPOE and bar-coding as important ways to prevent medication errors. February 6, 2001.www.ismp.org/Newsletters/acutecare/articles/20020207.asp). Since then, smart infusion pump technology has evolved considerably, and its application has spread substantially throughout US hospitals. Based on results from our 2011 ISMP Medication Safety Self Assessment for Hospitals, about half of the respondents now use smart pump technology throughout the organization to intercept and prevent errors due to misprogramming or miscalculation of doses or infusion rates. Another quarter of hospitals use smart infusion pumps in some patient care units. Yet, preventable errors associated with the misprogramming of smart infusion pumps still occur, sometimes causing serious harm to patients.
Failing to employ available dose error-reduction software (DERS) as intended and to heed important clinical alerts are common contributors to these errors. In particular, the misuse of custom concentration options (i.e., user must fill in the concentration) that do not employ a hard (requires reprogramming) minimum concentration limit is a prime example. This issue contributes largely to preventable errors with smart pumps given the counterintuitive, inverse relationship between concentration and volume. More concentrated drugs require less volume to deliver a specified dose; less concentrated drugs require more volume to deliver a specified dose. When using "fill-in-the-blank" custom concentrations, the concentration must be programmed into the pump so it can calculate the volume needed to deliver the prescribed dose. If the programmed concentration is lower than the actual concentration in the infusion bag or syringe, the pump will deliver an overdose. If the programmed concentration is higher than the actual concentration in the bag or syringe, the pump will deliver an underdose. Without a hardminimum concentration limit, the former scenario has led to life-threatening events, such as those described below.
A physician prescribed IV HYDROmorphone 20 mg/100 mL (0.2 mg/mL) to infuse at 2.5 mg/hour. In this hospital, the standard concentration for this infusion was 0.1 mg/mL, so the custom concentration of 0.2 mg/mL had to be entered into the smart pump. The nurse selected the custom concentration option then mistakenly entered 2.5 mg/100 mL as the concentration instead of 20 mg/100 mL. Given the erroneously programmed concentration of 0.025 mg/mL, the pump issued a soft (can be overridden) low concentration alert. The nurse overrode the warning, mistakenly believing the warning was inconsequential. Based on the erroneous concentration, the smart pump infused the drug at a rate of 100 mL/hour, while the intended rate was 12.5 mL/hour. The pump delivered the entire bag of HYDROmorphone 20 mg to the patient in 1 hour. The outcome to the patient was not reported.
An infusion of IV furosemide 10 mg/hour was prescribed. When programming the smart pump, a nurse selected the custom concentration option and then accidentally entered the concentration as 10 mg/100 mL (0.1 mg/mL) instead of 100 mg/100 mL (1 mg/mL). The pump had a soft low concentration limit set at 0.2 mg/mL, so a soft alert was issued. The nurse bypassed the alert, and the entire bag containing 100 mg of furosemide infused in 1 hour instead of 10 hours. Fortunately, the patient was not harmed.
Milrinone IV was prescribed to infuse at 2.5 mg/hour. The pharmacy dispensed a 20 mg/100 mL (0.2 mg/mL) milrinone infusion bag. Using the custom concentration option, a nurse set the concentration as 0.2 mg/100 mL. The entire bag containing 20 mg infused in a matter of minutes instead of infusing over 8 hours. The patient required a bolus of IV fluids to treat hypotension, but no changes in the patient's heart rhythm were reported.
Other serious smart pump-related errors have occurred when practitioners have unnecessarily selected a custom concentration option—and then entered the wrong concentration—even though a standard concentration option for the drug was available in the pump library. In these cases, programming errors would have resulted in a hard clinical alert (requiring reprogramming) had the standard concentration pathways been employed rather than the custom concentration pathways. Examples of this type of error follow.
A physician prescribed IV heparin to infuse at 800 units/hour. The pharmacy dispensed the heparin in a 250 mL bag (25,000 units/250 mL). This option was available in the smart pump library, but the nurse selected the custom concentration option and erroneously entered the heparin concentration as 800 units/250 mL. Given the erroneously programmed concentration of 3.2 units/mL, the smart pump infused the drug at a rate of 250 mL/hour, not the intended rate of 8 mL/hour. The pump delivered the entire 25,000 units of heparin to the patient in 1 hour. The patient required treatment with IV protamine but did not experience significant bleeding.
A physician prescribed IV insulin (regular) 12.5 units/hour for a patient with hyperglycemia. A standard insulin infusion (100 units/100 mL, 1 unit/mL) was dispensed from the pharmacy. When programming the pump, the nurse failed to select the standard insulin concentration and instead used the custom concentration option to enter an erroneous concentration of 5 units/100 mL (0.05 units/mL). The smart pump infused the drug at a rate of 250 mL/hour. The entire bag containing 100 units of insulin infused in approximately 20 minutes. The patient's outcome was not reported.
A physician prescribed morphine patient- controlled analgesia with a demand dose of 1.5 mg, a lockout of 10 minutes, and a basal rate of 1.5 mg/hour. The pharmacy dispensed a 60 mL syringe containing morphine 55 mg/55 mL. Instead of using the standard concentration (1 mg/mL) option in the library, the nurse entered a custom concentration of 1.5 mg/55 mL, which resulted in a concentration of 0.027 mg/mL. Given the basal rate of 1.5 mg/hour, the patient received the entire 55 mg of morphine within an hour and was transferred to an intensive care unit for treatment. No outcome was reported.
Some of the above-cited errors appear to be mental mix-ups in which the "per mL" concentration was paired with the total infusion volume—for example, a 1 mg/mL concentration of morphine in a 25 mg/25 mL syringe ends up as a 1 mg/25 mL concentration. Sometimes, the way the concentration is expressed on labels—particularly if the label includes technician instructions for admixture—has also contributed to mistaken concentrations.
If a soft low concentration alert is provided, the significance of the alert may not be fully appreciated. Since the primary emphasis on averting IV errors is often on doses that exceed maximum limits, it appears that "low concentration" soft alerts may be misinterpreted as being similar to "low dose" alerts. Pharmacists responsible for building and maintaining smart pump libraries also may not fully appreciate the significance of "low concentration" alerts and the importance of making them hard alerts, particularly for high-alert drugs.
Residual custom concentrations that inadvertently remain in the drug library after a limited number of standard concentrations has been added to the library is another factor associated with these errors. This problem has been reported with pediatric drug infusions for which standard concentrations have more recently been established. Custom concentrations may be required for some medications that are dosed according to body weight or surface area. But leaving the option open to enter the concentration of infusions that have since been standardized needlessly in-creases the risk of patient harm.

Safe Practice Recommendations

There are several lessons to be learned from the events described above to maximize safety when using smart infusion pumps.

Assess Vulnerability to Serious Errors

Assess your vulnerability to programming errors related to the use of multiple standard concentrations and custom concentration options available in the pump library. The risk of serious adverse drug events due to these vulnerabilities should be explored and addressed as suggested below.

Standardize Concentrations

When possible, use a single, standard concentration for each drug infusion. If more than one concentration is necessary, limit the number of standard concentrations to two, and avoid concentrations that differ by a factor of 10 (e.g., 0.1 mg/mL and 1 mg/mL, 1 mg/mL and 10 mg/mL), which could be confused. Use of custom concentrations should be curtailed and, when possible, restricted to selected patient care areas. Remove custom concentration options from the pump library when a standard concentration for that drug has been established and entered into the library.

Set Hard Minimum Concentration Limits.

For each drug that allows a custom concentration option in the library, set a hard minimum concentration limit that requires reprogramming to avoid a catastrophic overdose. This is especially important for infusions with high-alert medications.

Educate Staff

Educate staff regarding the inverse relationship between concentration and volume and the significance of low concentration alerts.

Distinguish Custom Concentrations

Should a custom concentration be unavoidable, make the container label distinctive and affix auxiliary labels as appropriate.

Require Doses to be Expressed in the Drug's Metric Weight

Ensure that protocols and prescribers' orders for infusions include a metric weight per time period (mg/hour, mcg/kg/hour, etc.). An order for an infusion with just the infusion rate (e.g., mL/hour) should not be accepted, even if only one standard concentration of the medication is being used hospital-wide. As appropriate, handwritten orders for infusions should not be prescriptive regarding the concentration—only the patient's dose (mg/hour, mcg/kg/min, etc.) should be specified to avoid the risk of variable concentrations. Standardized order sets and electronic prescribing systems should allow the prescriber to select only the standard concentration(s) when applicable.

Match MAR and Labels to Pump Settings

The medication administration record (MAR) and the infusion label should present the drug and concentration (and infusion rate, if provided) in the same manner required when programming the pump, with specific instructions for custom concentrations as necessary. Extraneous technician preparation instructions should not be included on the final product label.

Verify Pump Programming

For infusions with key high-alert medications (e.g., patient controlled analgesia, insulin), require an independent double-check of the product label, MAR, and pump settings. Employ barcode scanning technology to verify patients and infusions, as well as interoperable electronic medical records or other technology that can automatically populate required pump fields (as this functionality becomes available). For all infusions, assess the final infusion rate to be sure it falls within an expected range. Entering an erroneous, low concentration will often result in a very high, atypical infusion rate, which should serve as a signal to re-verify the pump settings.

Analyze Data

Routinely evaluate quality reports that are available with smart pumps to identify soft alert overrides and other vulnerabilities to errors, and take action to reduce identified risks. Be sure to identify any issues associated with why nurses would use a custom concentration option to program an infusion dispensed in a standard concentration, which is also available in the drug library.

Comments

Popular posts from this blog

Contact Precautions May Have Unintended Consequences

Contact precautions, including gloves, gowns, and isolated rooms, have helped stem the transmission of hospital pathogens but have also had some negative consequences, according to findings from a new study. Healthcare worker (HCWs) visited patients on contact precautions less frequently than other patients and spent less time with those patients when they did visit, report Daniel J. Morgan, MD, from the University of Maryland School of Medicine and the Veterans Affairs (VA) Maryland Health Care System, Baltimore, and colleagues. Moreover, patients on contact precautions also received fewer outside visitors. "Less contact with HCWs suggests that other unintended consequences of contact precautions still exist," Dr. Morgan and coauthors write. "The resulting decrease in HCW contact may lead to increased adverse events and a lower quality of patient care due to less consistent patient monitoring and poorer adherence to standard adverse event prevention methods (such...

CareFusion Issues Update on Infant Breathing Product Recall

July 5, 2012 — Medical device maker CareFusion has issued an update reminding healthcare providers of its voluntary recall of its Air Life ™ Infant Breathing Circuit, initiated back in May. The US Food and Drug Administration (FDA) has classified this action as a class 1 recall, meaning there is a reasonable probability of serious adverse health consequences or death associated with use of the defective units. The update was posted July 2 on the FDA  Website. On May 29, 2012, CareFusion sent an  Urgent Recall Notice  to customers and distributors stating that the company had identified potential risks associated with the Air Life  Infant Breathing Circuit. The action was initiated after the company received complaints of the Y adapter within the breathing circuit developing cracks during patient use. "If a crack develops in the Y adapter, this could potentially result in a leak in the closed ventilation system, leading to a loss in the intended tidal volum...

FDA Approves Tapentadol ER for Diabetic Neuropathy

August 29, 2012 — The US Food and Drug Administration (FDA) has approved tapentadol extended-release (ER) ( Nucynta , Janssen Pharmaceuticals, Inc) for the management of neuropathic pain associated with diabetic peripheral neuropathy (DPN) in adults for whom a continuous opioid analgesic is required over an extended time. It is the first opioid to receive this indication, the company notes in a statement today. DPN, the most common type of neuropathy, affects an estimated 16% of the more than 25 million Americans who have diabetes. The condition is often unreported and untreated, with an estimated 2 out of 5 cases not receiving care. Tapentadol ER is already approved for the treatment of moderate to severe chronic pain in adults requiring a continuous opioid analgesic for an extended period. It is a centrally acting synthetic analgesic, although the exact mechanism of action is unknown, the release states. "Although the clinical relevance is unclear," the company n...